Soil Bacteria Confer Plant Salt Tolerance by Tissue-Specific Regulation of the Sodium Transporter HKT1
نویسندگان
چکیده
منابع مشابه
Soil Bacteria Confer Plant Salt Tolerance by Tissue-Specific Regulation of the Sodium Transporter <italic>HKT1</italic>
Elevated sodium (Na) decreases plant growth and, thereby, agricultural productivity. The ion transporter high-affinity K transporter (HKT)1 controls Na import in roots, yet dysfunction or overexpression of HKT1 fails to increase salt tolerance, raising questions as to HKT1’s role in regulating Na homeostasis. Here, we report that tissuespecific regulation of HKT1 by the soil bacterium Bacillus ...
متن کاملA Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance.
A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella sa...
متن کاملHumic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis
Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on ...
متن کاملRegulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice
Drought stress is one of the most determinative factors of agriculture and plays a major role in limiting crop productivity. This limitation is going to rising through climate changes. However, plants have their own defense systems to moderate the adverse effects of climatic conditions. MicroRNA-mediated post-transcriptional gene regulation is one of these defense mechanisms. The root endophyti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Plant-Microbe Interactions®
سال: 2008
ISSN: 0894-0282,1943-7706
DOI: 10.1094/mpmi-21-6-0737